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The  effects  of  co-doping  with  Ta-  and Li-ions  on  the microstructure,  crystal  structure,  ferroelectric,  and
electric  field-induced  strain  properties  of  Bi1/2(Na0.82K0.18)1/2TiO3 (BNKT)  ceramics  were  investigated.
Li substitution  into  Na-sites  led  to a  ferroelectric-nonpolar  phase  transition  and  a  large  accompanying
normalized  strain  (Smax/Emax) of 727  pm/V  near  the  phase  boundary,  when  2.5  mol%  Li  and  2.5  mol%  Ta
were  co-doped  on  A- and  B-sites,  respectively.  The  phase  transition-related  strain  was  thought  to  be
induced  by  a  decrease  in the  tolerance  factor  of  the  perovskite  structure.
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erroelectrics
intering
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lectrostriction
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. Introduction

Recently, lead-free bismuth perovskite ceramics have attracted
ttention as possible alternatives for Pb-containing lead zirconate
itanate (PZT) that have primarily been used as piezoelectric sen-
ors and electromechanical actuators [1–4].

Orthorhombic bismuth sodium titanate, (Bi1/2Na1/2)TiO3 (BNT),
s thought to be an excellent lead-free piezoelectric ceramic candi-
ate because of its large remnant polarization (Pr = 38 �C/cm2) and
igh Curie temperature (Tc = 320 ◦C) [5]. However, its high conduc-
ivity and high coercive field (Ec = 73 kV/cm) can cause problems in
he poling process, and thus limit its practical applications [5–8].
uch a barrier was found to be overcome by forming solid solu-
ions with tetragonal perovskites such as BaTiO3 (BT) [1–3,9,10]
r (Bi1/2K1/2)TiO3 (BKT) [11–15].  Moreover, a giant electric field-
nduced strain (EFIS) comparable to that in soft PZT counterparts
as been reported for BNT–BaTiO3–(K,Na)NbO3 (BNT–BT–KNN)
eramics [16,17]. This system recently showed strong relaxations

n terms of frequency dependence of the dielectric properties near
hase transition temperatures [10].

∗ Corresponding author. Tel.: +82 52 259 2286; fax: +82 52 259 1688.
E-mail address: jslee@ulsan.ac.kr (J.-S. Lee).

925-8388/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2011.09.043
On the other hand BNT–BKT (BNKT) solid solutions exhibit
higher piezoelectric properties near the morphotropic phase
boundary, where the BKT concentration ranges from 16% to 20%
[11–15]. More recently, it was  found that large strains in BNKT
(Na/K = 82/18 or 78/22) ceramics can be observed when B-site Ti
ions are substituted with either isovalent ions such as Hf [18]
and Zr [19] or aliovalent ions including Nb [20] and Ta [21]. In
light of this observation, it is useful to examine the effect of
simultaneous A- and B-site substitution on EFIS in BNKT. This
work investigates the EFIS of BNKT ceramics co-doped with Li
and Ta at the A- and B-sites, respectively, with a series of com-
positions in the (Bi0.5Na0.41−xK0.09Lix)(Ti1−yTay)O3 system. Since
Ta-substituted BNKT was reported to reveal large strains when the
Ta concentration lies in the range of 2–3 mol% [21], this work fixes
the Ta doping level y at 0.025, while Li content x is varied in the
range of 0–0.1.

2. Experimental

A conventional solid state reaction route was applied to prepare powders with
compositions of (Bi0.5Na0.41−xK0.09Lix)(Ti1−yTay)O3, where {x, y} = {(0, 0), (0, 0.025),
(0.025, 0.025), (0.050, 0.025), (0.075, 0.025), and (0.100, 0.025)}. Powders of Bi2O3,

K2CO3, Ta2O5, TiO2, Li2CO3 (99.9%, Kojundo Chemical, Japan) and Na2CO3 (99.9%,
Ceramic Specialty Inorganics) were used as raw materials. First, the powders were
weighed according to chemical formula and then ball-milled for 24 h in anhydrous
ethanol with zirconia balls. The slurry was dried and calcined at 850 ◦C for 2 h. The
calcined powder was pressed at 200 MPa  into circular pellets with a diameter of

dx.doi.org/10.1016/j.jallcom.2011.09.043
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:jslee@ulsan.ac.kr
dx.doi.org/10.1016/j.jallcom.2011.09.043


238 V.-Q. Nguyen et al. / Journal of Alloys and Compounds 511 (2012) 237– 241

F i1−yTa
(

1
f

m
R
e
m
o
p
i
t

3

a

ig. 1. Polished and thermally etched surface micrographs of (Bi0.5Na0.41−xK0.09Lix)(T
c)  x = 0.025, y = 0.025; (d) x = 0.1, y = 0.025.

2  mm.  The green compacts were sintered in covered alumina crucibles at 1150 ◦C
or  2 h in air.

The relative density of the fired specimen was determined by the Archimedes
ethod. The crystal structure was analyzed using an X-ray diffractometer (XRD,

AD  III, Rigaku, Japan), and the surface morphology was observed with a field-
mission scanning electron microscope (FE-SEM, JEOL, JSM-65OFF, Japan). Electrical
easurements were carried out after screen-printing Ag paste onto both sides

f  the disk-shaped specimen and subsequent firing at 700 ◦C for 30 min. The
olarization–electric field (P–E) and EFIS hysteresis loops were measured in sil-

con oil using a modified Sawyer–Tower circuit and a linear variable differential
ransducer, respectively.
. Results

The microstructures of specimens were observed after polishing
nd subsequent thermal etching and are shown in Fig. 1. Undoped

Fig. 2. X-ray diffraction patterns of (Bi0.5Na0.41−xK0.09Lix)(Ti1−yTay)O3
y)O3 ceramics sintered at 1150 ◦C for 2 h; (a) undoped (x = 0, y = 0); (b) x = 0, y = 0.025;

BNKT, as seen in Fig. 1(a), reveals a dense microstructure with sev-
eral pores, whose average grain size was found to be 0.82 �m.  When
up to 2.5 mol% Ti was  substituted with Ta, as shown in Fig. 1(b),
the average grain size was slightly decreased to 0.78 �m.  Further
Li doping on A-sites considerably increased the average grain size
as clearly seen in Fig. 1(c) and (d). The average grain size of the
10 mol% Li-substituted specimen (x = 0.1, y = 0.025) was  character-
ized as 1.2 �m.  It was  also reported that Li substitution into the
A-site in BNT-based ceramics not only enhances the grain growth
[22–24], but lowers the sintering temperature [25].
Fig. 2 displays X-ray diffraction patterns for sintered spec-
imens. Undoped BNKT (x = 0, y = 0) revealed peak splittings at
around 40◦ of {1 1 1} reflections and 46◦ of {2 0 0} reflec-
tions, which indicated the coexistence of rhombohedral and

ceramics at different doping concentrations of Li (x) and Ta (y).
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strain in Bi perovskites is believed to be associated with the elec-
tric field-induced phase transition from a nonpolar pseudocubic
or low anisotropy phase to a more asymmetric phase. This transi-
tion was recently clarified by synchrotron X-rays [26,27],  neutron
ig. 3. Effects of Li and Ta doping on the ferroelectric and field-induced strain pro
ysteresis loops.

etragonal phases, consistent with previous studies on BNT–BKT
olid solutions [11–15].  The sample at x = 0 and y = 0.025 that was
urther substituted with 0.025 mol  Ta on B-sites also indicated
he coexistence of both ferroelectric phases. As Li was further
ubstituted on A-sites in the range of x = 0–0.1, both anisotropic fer-
oelectric phases transformed into an isotropic pseudocubic phase,
hich was evidenced by merging of (1 1 1)/(1̄ 1 1) and (0 0 2)/(2 0 0)

nto (1 1 1) and (2 0 0), respectively. Such a transition is also
bserved in Nb- or Ta-substituted BNKT (82/18) ceramics [20,21],
hereas the present result is interesting because Li is an A-site

ubstituent.
The effects of Li and Ta doping on the field-induced polariza-

ion (P–E)  and strain (S–E)  hysteresis loops of BNKT ceramics are
hown in Fig. 3. In case of unmodified BNKT (x = 0 and y = 0), typical
erroelectric P–E and S–E loops that are characterized by a dis-
inctive squareness in the P–E loop as well as a butterfly-shaped
–E curve are observed. In case of 0.025 mol  Ta-doped BNKT (x = 0
nd y = 0.025), the specimen reveals a pinched P–E loop, which
s often observed in other modified BNT ceramics [16,17,22,23].
s Li is further doped on A-sites, the P–E loop becomes close to

hat of a paraelectric that is distinct as a linear P–E curve with
ittle remnant polarization Pr, meaning that Li doping promotes a
E–NP phase transition, consistent with the XRD results shown in
ig. 2.

When examining the S–E loop of 0.025 mol  Ta-doped BNKT (x = 0
nd y = 0.025) in Fig. 3, negative strains at Ec and −Ec are observed,
hich suggests the existence of polar domains that cause a negative

train when domain orientation is reversed. When both Ta and Li
oncentrations were 0.025 mol  (x = y = 0.025), the negative strain
lmost vanishes, implying that there is little ferroelectric domain
n the specimens [17]. Further increasing the Li doping level x to 0.1
esulted in a parabolic S–E loop with a markedly decreased strain.

Unipolar field-induced strain is more important in a practi-
al sense because most electromechanical actuators are operated
n a unipolar mode. Fig. 4 represents unipolar S–E loops and
max/Emax values of Li- and Ta-doped BNKT ceramics. Undoped
NKT shows an Smax/Emax value of 230 pm/V, while 0.025 mol  Ta
oping increases the Smax/Emax to 432 pm/V. Simultaneous A-site
oping with 0.025 mol  Li (x = y = 0.025) leads to an Smax/Emax of

27 pm/V, comparable to high end values of soft PZT ceramics [2].
urther Li doping gradually reduces the d∗

33 to 87 pm/V at x = 0.1 as
he trend is almost equal to the maximum strain in the bipolar S–E
oops in Fig. 3.
s of Bi1/2(Na0.82−xLixK0.18)1/2(Ti0.975Ta0.025)O3 ceramics; (a) P–E and (b) bipolar S–E

4.  Discussion

As seen in previous reports on Nb- or Ta-doped BNKT ceramics
[20,21], this study found that Li- and Ta-modified BNKT showed a
FE–NP phase transition as the Li content increased. Furthermore, a
large strain was induced just after the phase transition. The large
Fig. 4. Effects of Li and Ta doping on (a) unipolar S–E loop and (b) normalized strain
Smax/Emax of Bi1/2(Na0.82−xLixK0.18)1/2(Ti0.975Ta0.025)O3 ceramics.
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ig. 5. The tolerance factor of BNKT as a function of Ta and Li doping concentrations.

iffraction [28], transmission electron microscopy [29], and con-
entional X-ray diffraction [30–34] studies under electric fields.
lthough nonpolar Bi-perovskites far from the FE–NP phase bound-
ry were recently found to exhibit thermally stable electrostrictive
oefficients [35,36],  an understanding of the nature of nonpolar or
eak polar state near the phase boundary is still lacking.

According to other recent studies on Li-doped BNT-based
eramics [22–25],  Li doping on A-sites reduced both Pr and Ec

ven though their electric field-induced strain behaviors were not
xamined. The driving force for the FE–NP phase transition in Bi-
erovskites, which is one of key aspects in understanding the large
train in these materials, should be considered. A comprehensive
nalysis of the present results combined with our recent works
n BNKT doped with Zr, Hf, Nb, and Ta [18–21] suggests that the
E–NP phase transition occurs when there is a decrease in the Gold-
chmidt’s tolerance factor (t) [37], which is often quoted to explain
he stability of the ABO3 perovskite structure and is given by the
ollowing equation;

 = rA + rO√
2(rB + rO)

(1)

here rA, rB, and rO are the ionic radii of A- and, B-site cations
nd oxygen, respectively. It was reported that a perovskite crystal
tructure is stable when t is in the range of 0.85–1.09 [38].

Based upon a Shannon’s report [39] on ionic radii for Bi3+

0.117 nm), Na+ (0.136 nm), K+ (0.164 nm), Li+ (0.092), Ti4+

0.0605 nm), Ta5+ (0.064 nm), and O2− (0.14 nm), the t of Li- and
a-doped BNKT was calculated as a function of doping level as
isplayed in Fig. 5. In case of aliovalent Ta5+ doping on Ti4+, the
ormation of A-site vacancies that are induced to maintain charge
alance in the lattice was taken into account for calculating t. It can
e seen in Fig. 5 that both Li- and Ta-doping result in reductions in
. This is mathematically related with either larger ion doping on
-sites or smaller ion doping on A-sites. In the present study, Ta5+ is

arger than Ti4+ and further induces an A-site vacancy per two Ta5+

ons, which also leads to a decrease in effective size of A-site ions. On
he other hand, Li+ is smaller than the average ionic size calculated
n the basis of compositional fractions of A-site cations. Interest-
ngly, by analyzing a wide range of reports on BNT-based ceramics,
ee et al. [40] found that both the small signal piezoelectric con-
tant d33 and piezoelectric coupling coefficient kp in Bi-perovskite
iezoelectric ceramics are enhanced as t increases. Consistent with
ublished results, the present study also shows that the ferroelec-
ricity (Pr and Ec) decreases with Li and Ta doping as seen in Fig. 3 to

ause reductions in t and lattice anisotropy, resulting in a nonpolar
seudocubic phase at higher Li levels.

Additional evidence for the intimate relationship between t and
he FE–NP phase transition is that the slope in Fig. 5 is closely related

[
[

[
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to the composition span of the FE–NP phase transition region. Fig. 5
illustrates that the FE–NP transition by Li doping would occur more
slowly as a function of doping level compared to that with Ta
doping. Indeed Li doping in this work results in a slower FE–NP
transition as a function of composition compared to that with Ta
doping. In the case of Ta-doped BNKT, the transition occurred much
faster in terms of doping level, similar to the results of a previous
report [21], while Li-doped BNKT exhibited a transition spanning
over 0–0.1 mol, as seen in Fig. 3. This fact is of practical impor-
tance because a higher process tolerance regarding composition
can be established. The normalized strain (Smax/Emax) of the Li-
doped BNKT shown in Fig. 4 is less sensitive to doping level in
comparison with that of Ta-doped BNKT [21].

It should be noted that the normalized strain Smax/Emax of
727 pm/V obtained in this work is higher than those recently
reported on other B-sited modified BNKT ceramics [18–21] that
were in the range of 475–641 pm/V. One possible explanation might
be that Li- and Ta-doped BNKT is more flexible under electric
fields because lattice strains by A- and B-site dopants as well as
A-site vacancies complexly contribute to the weakening of [BO6]
distortion in the Bi-perovskite structure even though an exact
understanding requires further studies.

5. Conclusions

The effects of co-doping with Ta- and Li-ions on the microstruc-
ture, crystal structure, ferroelectric, and EFIS properties of BNKT
ceramics were investigated. It was found that Li doping on A-sites
also leads to a FE–NP phase transition, as found in other previous
reports on B-site doping, resulting in a large strain near the phase
boundary. Such a phase transition is strongly believed to be induced
by a decrease in the tolerance factor of ABO3 perovskite structure,
which is also evidenced by the fact that Li doping shows a more
diffuse FE–NP phase transition than Ta doping.
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